Comparison of Rotational Traction of Athletic Footwear on Varying Playing Surfaces Using Different Normal Loads

نویسنده

  • A. S. McNitt
چکیده

As an athlete accelerates, stops, and changes direction, numerous forces are transmitted to the lower extremities. The interaction between an athlete’s shoe and the playing surface has been indicated as a factor in lower extremity injury risk. In particular, high rotational forces may result in increased injuries to the lower extremities. Rotational traction forces produced by eight different cleated shoes on Kentucky bluegrass (Poa pratensis L.), AstroTurf GameDay Grass 3D, FieldTurf Revolution, and Sportexe Omnigrass 51 under three normal loads (vertical forces) of 787, 1054, and 1321 N were measured using Pennfoot, a portable traction testing device. Of the treatments in this study, shoe type influenced rotational traction most, with differences among shoes being nearly four times as large as those among playing surfaces. Traction was either the same or within several Nm on each surface tested. Traction on the three synthetic turf surfaces ranged from 49.3 to 53.1 Nm and the traction level of Kentucky bluegrass was 52.3 Nm. Traction levels among shoes ranged from 43.8 to 58.6 Nm. The results of this study indicate that footwear selection has a larger effect on rotational traction, and potentially injury risk, than the playing surfaces evaluated in this study. Traction Testing on Natural and Synthetic Turf The interaction between an athlete’s shoe and the playing surface likely influences lower extremity injury risk. Specifically, injuries to lower extremities may result from an athlete’s foot becoming “entrapped” in the playing surface during pivoting movements (Lambson et al, 1996; Orchard et al., 2001; Torg et al., 1974). Researchers have attempted to quantify lower extremity injury risk by measuring the rotational traction forces that occur between shoes and playing surfaces (Andreasson et al., 1986; Bonstingl et al, 1975; Heidt et al., 1996; Livesay et al., 2006; McNitt et al., 2004a; Torg et al., 1996; Villwock et al., 2009a, 2009b). Rotational traction is the traction related to rotational motion about an axis normal to the surface (American Society for Testing and Materials, 2009). In the following studies, Published in Applied Turfgrass Science DOI 10.2134/ATS-2013-0073-RS © 2014 American Society of Agronomy and Crop Science Society of America 5585 Guilford Rd., Madison, WI 53711 All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. T.J. Serensits and A.S. McNitt, Dep. of Plant Science, The Pennsylvania State Univ., 116 ASI Building, University Park, PA 16802. Received 25 Oct. 2013. *Corresponding author ([email protected]). Published July 9, 2014

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Varying Surface Characteristics on the Hardness and Traction of Baseball Field Playing Surfaces

Within most baseball fields there is a non-turfed basepath surface in addition to a turfed playing surface that can be either natural or synthetic. Two important properties of any playing surface are its ability to absorb the energy generated upon impact (surface hardness) and the level of traction it provides to the athlete during play. Studies were conducted to determine the effects of varyin...

متن کامل

Footwear traction and lower extremity noncontact injury.

PURPOSE Football is the most popular high school sport; however, it has the highest rate of injury. Speculation has been prevalent that foot fixation due to high footwear traction contributes to injury risk. Therefore, the purpose of the study was to determine whether a relationship exists between the athlete's specific footwear traction (measured with their own shoes on the field of play) and ...

متن کامل

The role of research in the development of athletic footwear

The three main needs of athletes are performance, injury protection and comfort. Footwear enhances performance through increases in traction and biomechanical efficiency. Footwear protects the foot at the interface with the ground and the entire body against the forces resulting from repeated feet-ground impacts. Footwear can also reduce injuries by correcting for the locomotor system static st...

متن کامل

The Athletic Shoe in Football

BACKGROUND Foot and ankle injuries are common in sports, particularly in cleated athletes. Traditionally, the athletic shoe has not been regarded as a piece of protective equipment but rather as a part of the uniform, with a primary focus on performance and subjective feedback measures of comfort. Changes in turf and shoe design have poorly understood implications on the health and safety of pl...

متن کامل

Rotational and peak torque stiffness of rugby shoes.

OBJECTIVE Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. METHODS Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014